

ASX Announcement

Spectacular near surface intercepts at Montepuez

<u>Highlights</u>

• Drilling at Montepuez delivers spectacular results including:

BF156A, 31 metres at 13.97% TGC from 5 metres,

BF157A, 26 metres at 15.31% TGC from 6 metres,

BF196A, 27 metres at 11.99% TGC from 8 metres and

BF252A, 15 metres at 13.39% TGC from 3 metres.

- The results will underpin an updated mineral resource estimate and reserve determination scheduled for release in late October early November.
- Montepuez ideally placed to capitalise on the sharp increase in graphite demand and prices forecast to flow from the lithium battery boom

Battery Minerals Limited ("Battery Minerals") (ASX: BAT) is pleased to announce exceptionally high-grade drilling results which will help underpin an update to a mineral resource and reserve estimate at its Montepuez graphite project in Mozambique scheduled for release in the December 2018 Quarter.

The results, which come from the weathered, close to or at surface zone of the Buffalo deposit, highlight the quality of the project's mineralisation and its ability to be a low-cost producer.

The drilling targeted both infill zones and strike extensions to existing high-grade oxide mineralization. The spectacular near-surface intercepts confirm the geological interpretations as well as grade continuity.

Battery Minerals Managing Director David Flanagan said most of the holes returned intercepts greater than 4 metres at 10%Total Graphitic Carbon (TGC) or better.

"With the drilling now completed across both the Buffalo and Elephant Deposits the team have delivered some spectacular results and confirmed additional mineralisation outside the current reserve estimate and we look forward to updating the mineral resource estimate for Buffalo using this data. We continue to see additional near mine exploration targets available to define more tonnes in due course." Mr Flanagan said.

"When you add this improved confidence to what is already a high-grade, low-cost project with construction well advanced and supported by offtake agreements, a granted Mining Licence and a port access allocation, it is clear that we are very well positioned to deliver an outstanding project.

"At the same time, Origin Capital is co-ordinating a team of internationally renowned independent experts and detailed due diligence is being advanced on all aspects of the

Montepuez Graphite Project including capital estimates and commissioning and ramp up programmes, mining plan, process flow sheets, financial models, product marketing and taxation. This has also included site and infrastructure inspection.

"Combined with the exceptional quality and advanced nature of our projects, we think this will maximise the financing options available to the Company."

Buffalo Grade Control and Mineral Resource Estimate

The Buffalo Deposit has been subjected to RC grade control drilling on a 50 metre by 12.5 metre grid. The drilling was designed to qualify the initial production areas for both the Elephant and Buffalo Deposits, update mineral resource estimates and refine mine plans. On 16 July 2018, based on the 118 holes received out of the total 171 drilled at Buffalo, Battery Minerals announced excellent near surface opportunities to maximise grade with the following intercepts of note (ASX Announcement: "*Resource increase at Montepuez Graphite Project*" dated 16 July 2018):

BF041A, 18 metres at 12.37% TGC from 12 metres,

BF042A, 16 metres at 12.31% TGC from 14 metres,

BF095A, 6 metres at 11.53% TGC from 4 metres and 19 metres at 13.18% TGC from 16 metres,

BF115A, 22 metres at 12.76% TGC from 10 metres,

BF116A, 23 metres at 13.84% TGC from 12 metres,

BF120A, 20 metres from 11.59% TGC from 9 metres,

BF125A, 19 metres at 15.39% TGC from 3 metres and

BF127A, 33 metres at 11.42% TGC from 3 metres.

With the assays for the balance of the 53 grade control holes of the Buffalo Deposit grade control programme received, Battery Minerals is pleased to supplement this information with the following intercepts of note:

BF153A, 21 metres at 12.13% TGC from 13 metres,

BF154A, 21 metres at 12.91% TGC from 15 metres,

BF156A, 31 metres at 13.97% TGC from 5 metres,

BF157A, 26 metres at 15.31% TGC from 6 metres,

BF196A, 27 metres at 11.99% TGC from 8 metres and

BF252A, 15 metres at 13.39% TGC from 3 metres.

The Buffalo Deposit drilling programme comprised 171 holes for 3,639 metres drilled to refusal using blade RC technique. This campaign was part of ongoing grade control drilling designed to update the mineral resource estimate for Buffalo, underpin the detailed daily mining schedule and confirm the geometry, grade and chemistry of the graphite ore. Representative plan and cross section are in Figure 1 and Figure 2.

For full details on the Buffalo Deposit grade control programme, please see the intercepts set out in Appendix 3 – Significant drill hole intercept table, collar details set out in Appendix 2 – Buffalo grade control drill hole collar table and ASX Announcement: "*Resource increase at Montepuez Graphite Project*" dated 16 July 2018.

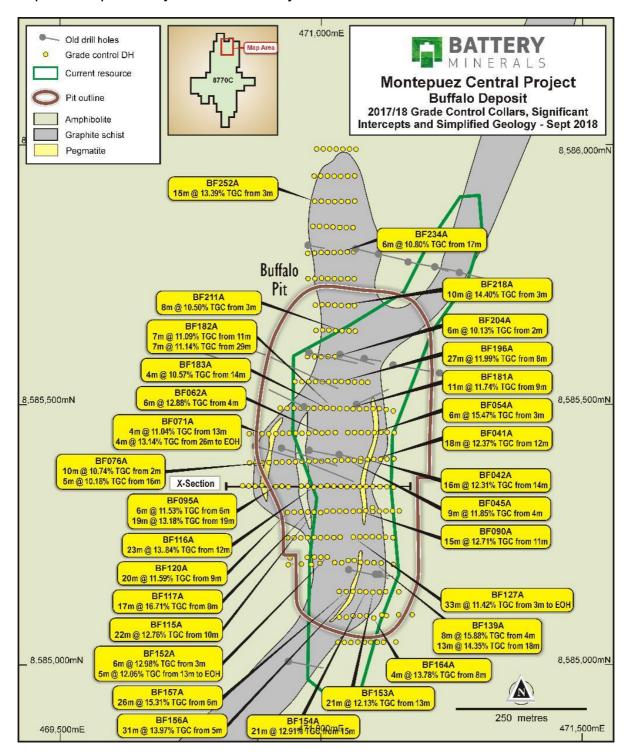


Figure 1: The Buffalo Deposit drill hole plan with annotated significant drill hole intercepts. Note the section location.

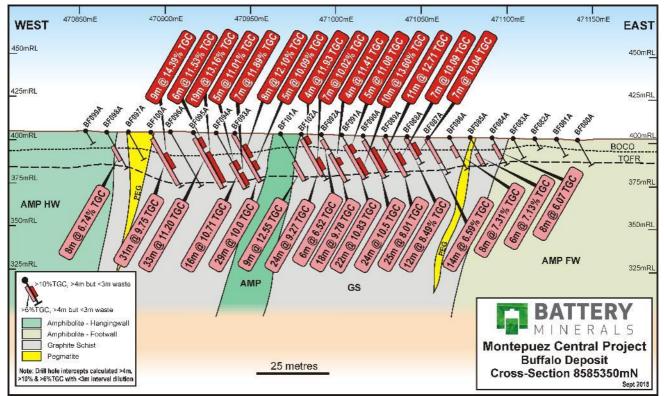


Figure 2: Cross section showing downhole significant total graphitic carbon percentages

Concurrent with this announcement, an update to the mineral resource estimate for Buffalo is underway. Results will be fed directly into the current mine plan activities to update the reserve estimation. The results of these estimations are likely to be completed in October 2018.

Warthog – Regional Drilling Observation

As previously reported, a total of 16 RC (reverse circulation) drill holes for 952 metres were executed as part of a reconnaissance programme to follow up the exciting drill hole intercept from EL258A where 12 metres at 14.27% TGC was intersected from a depth of 1 metre to the end of the hole (refer to announcement "*Outstanding drilling results further strengthen economic outlook for Montepuez graphite Project*" dated 4th April 2018). Unfortunately, the assays for this drilling are still outstanding (as of the announcement date). However, we will update the market in the next announcement around the pending updated mineral resource estimate completion.

Supplementary Information pertaining to the Buffalo Significant Drill Hole Intercept Data:

Geology and Geological Interpretation

The Montepuez Central Graphite Project is located within Xixano Complex and traverses the tectonic contacts between the Nairoto, Xixano and Montepuez Complexes. The Xixano

Complex includes a variety of metasupracrustal rocks enveloping predominantly mafic igneous rocks and granulites that form the core of a regional north-northeast to south-southwest trending synform. Graphite-bearing mica schist and gneiss are found in the Xixano Complex.

Locally at the Montepuez Central Graphite Project, graphitic schists occur with dolerites, meta-sediments, amphibolites and minor intrusions of cross-cutting pegmatite veins. Mineralisation at the Buffalo Deposit has been structurally thickened by local parasitic folding and is structurally complex. The graphite forms because of high-grade metamorphism of organic carbonaceous matter. The protolith from which the graphite formed may have been organic carbon deposited in a sedimentary environment.

Drilling, Sampling and Sub-sampling Techniques

RC drilling utilising a blade drill bit was the drilling methodology employed at the Buffalo Deposit grade control drilling. All samples were drilled dry and split through the cone splitter with a duplicate sample collected at the drill rig.

Sample Analysis

Analysis of the samples was conducted at ALS in Johannesburg using the method C-IR18. The method is appropriate for understanding graphite deposits and is a total method.

Background Information

Battery Minerals Limited is an ASX listed Australian company with two world-class graphite deposits in Mozambique, those being Montepuez and Balama Central. Battery Minerals has produced high quality graphite flake concentrate at multiple laboratories. Battery Minerals intends to commence graphite flake concentrate production from its Montepuez graphite project with first shipment within 14 months of completing project finance at export rates of 50,000tpa at an average flake concentrate grade greater than 96% TGC. In December 2017 and January 2018, Battery Minerals signed four binding offtake agreements for up to 41,000tpa of graphite concentrate, representing over 80% of Montepuez's forecast annual production. The Mozambican Government has granted Battery Minerals a Mining Licence for its Montepuez graphite project and approved the Company's EIA for the Montepuez graphite project.

As Battery Minerals executes subsequent expansions, it expects production to grow to over 100,000 tonnes per annum graphite flake concentrate from its Montepuez graphite project by 2020.

Battery Minerals has also recently announced delivery of a scoping study on its Balama Central project, which comprises a Stage 1 production rate of 55,000tpa (B1) and Stage 2 rate of an additional ~55,000tpa (B2) for an aggregate of 110,000tpa from Balama. Balama is currently the subject of a feasibility study. Combined with Montepuez and subject to continued positive economic, social and technical investigations, Balama Central (currently the subject of a feasibility study) provides scope for self-funded growth from a ~50,000tpa production-rate in year 1 and together with Montepuez supports growth to more than 200,000tpa within 3 years of first production. (For full details on the Balama Central Graphite

Project Scoping Study see ASX announcement dated 1st March 2018. Also see notes below below).

Investor Enquiries:	Media Enquiries:
David Flanagan Managing Director, Battery Minerals Limited Tel: +61 8 6148 1000 Email: <u>info@batteryminerals.com</u> Tony Walsh Company Secretary, Battery Minerals Limited Tel: +61 408 289 476	Paul Armstrong Read Corporate Tel: +61 8 9388 1474 Email: <u>paul@readcorporate.com.au</u>
Contact Details (Australian Office):	
Ground Floor 10 Ord Street West Perth, WA 6005 Australia	

Competent Person's Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr. Jason Livingstone, a Competent Person who is a member of both the Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr. Jason Livingstone is a full-time employee of Battery Minerals Limited. Mr. Jason Livingstone has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Jason Livingstone consents to the inclusion of the matters based on his information in the form and context in which it appears.

Important Notice

This ASX Announcement does not constitute an offer to acquire or sell or a solicitation of an offer to sell or purchase any securities in any jurisdiction. In particular, this ASX Announcement does not constitute an offer, solicitation or sale to any U.S. person or in the United States or any state or jurisdiction in which such an offer, tender offer, solicitation or sale would be unlawful. The securities referred to herein have not been and will not be registered under the United States Securities Act of 1933, as amended (the "Securities Act"), and neither such securities nor any interest or participation therein may not be offered, or sold, pledged or otherwise transferred, directly or indirectly, in the United States or to any U.S. person absent registration or an available exemption from, or a transaction not subject to, registration under the United States Securities Act of 1933.

Forward Looking Statements

Statements and material contained in this document, particularly those regarding possible or assumed future performance, resources or potential growth of Battery Minerals Limited, industry growth or other trend projections are, or may be, forward looking statements. Such statements relate to future events and expectations and, as such, involve known and unknown risks and uncertainties. Such forecasts and information are not a guarantee of future performance and involve unknown risk and uncertainties, as well as other factors, many of which are beyond the control of Battery Minerals Limited. Information in this presentation has already been reported to the ASX.

All references to future production and production & shipping targets and port access made in relation to Battery Minerals are subject to the completion of all necessary feasibility studies, permit applications, construction, financing arrangements, port access and execution of infrastructure-related agreements. Where such a reference is made, it should be read subject to this paragraph and in conjunction with further information about the Mineral Resources and Ore Reserves, as well as the relevant competent persons' statements.

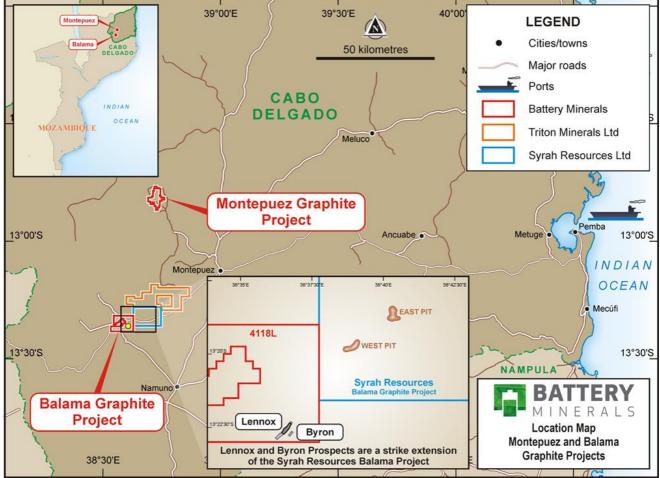


Figure 9: Montepuez Graphite Project location plan also showing location of the Battery Minerals Balama Graphite Project.

Appendix 1: Table 1 of JORC Code JORC Code, 2012 Edition Table 1 Appendix 3 to Announcement: Elephant Resource Update

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling	• Nature and quality of sampling (eg cut channels,	The entire RC hole was sampled and assayed at
techniques	random chips, or specific specialised industry	1m intervals.
	standard measurement tools appropriate to the minerals under investigation, such as down hole	
	gamma sondes, or handheld XRF instruments,	Internal logging procedures and processes
	etc). These examples should not be taken as	ensure that sample representivity is
	limiting the broad meaning of sampling.	maintained throughout the entire process.
	• Include reference to measures taken to ensure	
	sample representivity and the appropriate	During logging, a visual estimation of graphite
	calibration of any measurement tools or systems	content is used to base the lithology, along
	used.	with other indicator minerals. However, all
	• Aspects of the determination of mineralisation that are Material to the Public Report. In cases	samples were collected at a nominal 2 to 3kg
	where 'industry standard' work has been done	size and submitted for analysis via the LECO
	this would be relatively simple (eg 'reverse	analyser.
	circulation drilling was used to obtain 1 m	
	samples from which 3 kg was pulverised to	
	produce a 30 g charge for fire assay'). In other	
	cases more explanation may be required, such as	
	where there is coarse gold that has inherent	
	sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may	
	warrant disclosure of detailed information.	
Drilling	Drill type (eg core, reverse circulation, open-hole	The RC drilling was undertaken using a SHRAM RC
techniques	hammer, rotary air blast, auger, Bangka, sonic,	rig with Metzke rig mounted cone splitter. A
	etc) and details (eg core diameter, triple or	nominal 4.5 inch blade bit was used to achieve
	standard tube, depth of diamond tails, face-	drilling penetration instead of a normal hammer
	sampling bit or other type, whether core is	bit. The entire RC hole was sampled and assayed at 1m intervals.
	oriented and if so, by what method, etc).	Thi intervals.
Drill sample	• Method of recording and assessing core and chip	Sieved RC chip samples were collected and
recovery	sample recoveries and results assessed.	geologically logged and grade estimates (Visual Graphite Estimates).
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	diapinte Estimates).
	 Whether a relationship exists between sample 	The driller was instructed and supervised to ensure
	recovery and grade and whether sample bias may	that maximum sample recovery is to be obtained,
	have occurred due to preferential loss/gain of	issues were reported immediately and remedial
	fine/coarse material.	action taken to find a solution in difficult drilling
		conditions.
		The RC samples were assessed for moisture and
		weight at the rig with data recorded in the database.
		No bias was observed between sample size and
		grade determined.
Logging	• Whether core and chip samples have been	Drill holes were logged by trained and experienced
Бодунід	 whether core and chip samples have been geologically and geotechnically logged to a level 	geologists and the level of detail would support a
	of detail to support appropriate Mineral Resource	Mineral Resource estimation and subsequent
	estimation, mining studies and metallurgical	classification.

Criteria	JORC Code explanation	Commentary
Cincin	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging of all drill cuttings included; weathering, lithology, colour, mineralogy, mineralisation and visual graphite estimates. All data is initially captured on paper logging sheets and transferred to locked excel format tables for validation and is then loaded into the parent access database. All diamond drill core has been photographed and archived, firstly after mark-up and secondly after sampling. The logging and reporting of visual graphite percentages on preliminary logs is semi-quantitative and not absolute.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	All samples were drilled dry and split through the cone splitter with a duplicate sample collected at the drill rig. The sampling undertaken to date is appropriate for grade control purposes and geological interpretation. Samples were submitted to the ALS Minerals facility in Johannesburg, South Africa for sample preparation and analysis. Samples were weighed, assigned a unique bar code and logged into the ALS system. The entire sample was oven dried at 105° and crushed to -2mm. A 300g sub-sample of the crushed material was then pulverised to better than 85% passing -75µm using a LM5 pulveriser. The pulverised sample was split with multiple feed in a Jones riffle splitter until a 100-200g sub- sample was obtained.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Loss on Ignition (LOI) has been determined between 105° and 1,050°C. Results are reported on a dry sample basis. Analysis includes Total Graphitic Carbon by LECO. The detection limits and precision for the Total Graphitic Carbon (TGC) analysis are considered adequate for resource estimation. All laboratory batch QC measures are checked for bias before final entry in the database, no bias has been identified in the results received. The CRM TGC values range between 4-24%. The blank samples comprise 1-2kg of dolomitic marble quarried from a location 50km east of the Elephant Central project. Six CRM's (GGC001, GGC003, GGC004, GGC005, GGC006 and GGC010) were used to monitor graphitic carbon.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	Significant intersections were visually field verified and inspected by Jason Livingstone during his visits in 2018.

Criteria	JORC Code explanation	Commentary
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	No twinned drill holes have been drilled on the project to date however no sampling bias is believed to exist due to quality triple tube core recovery. Q-Q analysis of the RC versus DD drilling indicates that there is no discernible bias between the two drill methods.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	All spatial data across the Project was collected in WGS84 UTM Zone 37 South datum. Planned drill holes were surveyed using Garmin 62s GPS devices which typically have a ±5m error in the project area. Final collar locations were surveyed by GEOSURVEY utilising a differential GPS system with 0.02cm accuracy. Fresh satellite capture (30cm panchromatic standard 2A WorldView-3 stero orthoimagery) was used to produce a 0.5m contour digital survey model. Drill hole collars were used as control points in producing the digital contours.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	BAT's graphite prospects adopt drill line spacing on 400m and 200m spaced lines with 50m hole spacing on section. Additional grade control spaced drilling has been conducted within the weathered portions of the deposit at 50m by 12.5m spacings. This drill hole spacing is believed appropriate in which to assist in classifying Mineral Resources.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Reconnaissance geological mapping and pitting was conducted prior to drilling the prospect in 2015. Mapping and pitting identified the regional stratigraphic southwest-northeast trend and moderate (-50°-70° towards northwest) dipping rocks. Drill orientation was designed accordingly to limit potential bias. The drilling is considered to have no significant sampling bias relative to geological structure orientation.
Sample security	• The measures taken to ensure sample security.	The samples are stored in the company's field base until laboratory dispatch. Samples are shipped by courier to ALS – Johannesburg, South Africa for sample preparation and analysis. Any visible signs of tampering are reported by the
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	laboratory and none have been reported to date. Shaun Searle of RPM reviewed drilling and sampling procedures during the 2015 site visit and found that procedures and practices conform to industry standards

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land	• <i>Type, reference name/number, location</i>	The Montepuez Project 8770C Mining License
tenure status	and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	comprises an area covering 3,666.88ha and is held 100% by Battery Minerals Limited (Metals of Africa Limited prior to December 2016) via a locally owned subsidiary Suni Resources SA.
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	The Montepuez Project contains the Elephant, Buffalo and Lion deposits however resource and reserve estimations were limited to Elephant and Buffalo during the DFS.
		All statutory approvals have been acquired to conduct development activities and the Company has established a good working relationship with the government departments of Mozambique and continues to build its relationship with the local community.
		The company is not aware of any impediments relating to the licenses or area.
		The Company has completed its field investigations as part of the Environmental Impact Assessment which has subsequently been approved by the regulatory body of Mozambique.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	The Project area has been mapped at 1:250,000 scale as part of a nation-wide geological study prepared by a consortium funded by the Nordic Development Fund. The project area has also been flown with regionally spaced airborne geophysics (magnetics and radiometrics) as part of a post war government investment initiative.
		There is no record of past direct exploration activities on the license that BAT has knowledge of.
		A portion of the Montepuez Project was flown with VTEM by a neighbouring license holder and BAT flew its own survey in 2015.
Geology	• Deposit type, geological setting and style of mineralisation.	The deposits were discovered after drill testing a series of coincident VTEM conductors and prospective stratigraphy with mapped graphitic outcrop occurrences.
		The 8770C license occurs on the Xixano Complex and traverse the tectonic contacts between the Nairoto, Xixano and Montepuez Complexes. The Xixano Complex includes a variety of metasupracrustal rocks enveloping

Criteria	JORC Code explanation	Commentary
		predominantly mafic igneous rocks and granulites that form the core of a regional north-northeast to south-southwest-trending synform. The paragneisses include mica gneiss and schist, quartzfeldspar gneiss, metasandstone, quartzite and marble.
		The metamorphic grade in the paragneiss is dominantly amphibolite facies, although granulite facies rocks occur locally in the region. The oldest dated rock in the Xixano Complex is a weakly deformed meta-rhyolite which is interlayed in the meta-supracrustal rocks and which gives a reliable extrusion age of 818 +/- 10 Ma.
		Graphite-bearing mica schist and gneiss are found in different tectonic complexes in the Cabo Delgado Province of Mozambique.
		Local geology comprises dolerite, meta- sediments, amphibolites, psammite with graphitic metasediments and graphitic schists.
		At Elephant deposit the metamorphic banding and foliation strike about 005° and the GSQF dips moderately steep west.
		At Buffalo the deformation strained zone of GSQF, psammite and amphibolite exhibit brittle and brittle-ductile structures that intersect each other, the deformation zone is where graphite mineralisation is located and part of a regional metamorphic and deformation event.
		The Montepuez deposits are disseminated with graphite dispersed within gneiss. The graphite forms as a result of high grade metamorphism of organic carbonaceous matter, the protolith in which the graphite has formed may have been globular carbon, composite flakes, homogenous flakes or crystalline graphite.
Drill hole information	• A summary of all information material to the under-standing of the exploration results including a tabulation of the following information for all Material drill holes:	All exploration results have previously been reported by MTA/ BAT between 2015 and 2018.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length 	All drill hole information has been included in Appendix 2 of this report. No drill hole information has been excluded.

Criteria	JORC Code explanation	Commentary
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Drill hole intercepts are calculated using two sets of parameters: The first to highlight the higher grading intercepts are zones greater than 4 metres down hole that are greater than 10% TGC but overall, include no more than 3 metres of continuous less than 10% TGC material. The second to highlight the previously stated MRE cut off of 6% grading intercepts are zones greater than 4 metres down hole that are greater than 6% TGC but overall, include no more than 3 metres of continuous less than 6% TGC material. However, this is only used in the cross section to illustrate continuity. Metal equivalent values have not been used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	The geology at Elephant is less structurally complex than Buffalo and comprises a moderately steep westerly graphitic schist package bound by amphibolite and notable psammite in the southern portion of the orebody.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Relevant diagrams have been included within the main body of text
Balanced Reporting	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	The report is believed to include all representative and relevant information and is believed to be comprehensive.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical 	Regional airborne geophysical (magnetics, radiometrics), DEM and regional geological

Criteria	JORC Code explanation	Commentary
	survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	mapping was used to assist mapping interpretation and drill hole targeting.Subsequent to mapping, VTEM data was acquired and contributed to the surface geology interpretation.
		Metallurgical sample was sourced from surface trenches as well as drill core sample selected from fresh and oxidised horizons dispersed over the Elephant and Buffalo orebodies. Metallurgical samples were selected by lithology and TGC%. The samples are considered representative of the orebody.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further drilling to increase the size and/or confidence in the Mineral Resource will be conducted. Further metallurgical, geotechnical and hydrogeological drilling is planned.

Appendix 2: Buffalo Drill Hole Collar Table. Datum: Collar coordinates are given in WGS84 Zone 37South, Survey method: DGPS GNSS_0.02

Hole ID	Project	Prospect	Lease ID	UTM Grid ID	UTM_East	UTM_North	Elevation	Hole Type	Depth
BF006D	Montepuez Central	Buffalo	8870C	WGS84_37S	470,350	8,585,290	394.4	DD	278.7
BF007D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,066	8,585,801	402.6	DD	78.11
BF008D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,111	8,585,792	402.1	DD	101.43
BF009D	Montepuez Central	Buffalo	8870C	WGS84_37S	470,982	8,585,415	404.0	DD	89.95
BF010D	Montepuez Central	Buffalo	8870C	WGS84_37S	470,928	8,585,419	404.5	DD	177.14
BF011D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,038	8,585,405	403.7	DD	109.91
BF012D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,450	8,586,138	395.9	DD	52.49
BF013D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,393	8,586,153	396.8	DD	51.22
BF014D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,334	8,586,163	397.6	DD	54.14
BF015D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,284	8,586,175	398.5	DD	111.14
BF016D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,078	8,585,395	403.0	DD	96.36
BF017D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,002	8,585,198	402.6	DD	123.43
BF018D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,058	8,585,186	401.9	DD	120.16
BF019D	Montepuez Central	Buffalo	8870C	WGS84_37S	470,946	8,585,208	403.2	DD	103.98
BF020D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,168	8,585,779	401.4	DD	120.94
BF021D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,115	8,585,177	401.1	DD	44.53
BF022D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,218	8,585,770	400.8	DD	107.48
BF023D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,108	8,585,178	401.2	DD	32.43
BF024D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,115	8,585,177	401.1	DD	32.53
BF025D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,266	8,585,758	400.0	DD	89.55
BF026D	Montepuez Central	Buffalo	8870C	WGS84_37S	470,856	8,585,613	405.4	DD	362.55
BF027D	Montepuez Central	Buffalo	8870C	WGS84_37S	470,678	8,585,466	404.3	DD	110.55
BF028D	Montepuez Central	Buffalo	8870C	WGS84_37S	470,629	8,585,469	402.9	DD	122.55
BF029D	Montepuez Central	Buffalo	8870C	WGS84_37S	470,879	8,585,423	404.9	DD	289.69
BF030D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,140	8,585,581	402.4	DD	149.55
BF031D	Montepuez Central	Buffalo	8870C	WGS84_37S	470,943	8,585,008	401.6	DD	104.45
BF032D	Montepuez Central	Buffalo	8870C	WGS84_37S	470,484	8,585,272	400.2	DD	200.05
BF033D	Montepuez Central	Buffalo	8870C	WGS84_37S	470,396	8,585,023	394.1	DD	194.55
BF034D	Montepuez Central	Buffalo	8870C	WGS84_37S	470,877	8,585,424	404.9	DD	54.65
BF038A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,104	8,585,399	403	GC	31
BF039A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,091	8,585,398	403	GC	33
BF040A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,079	8,585,398	403	GC	20
BF041A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,066	8,585,397	403	GC	36
BF042A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,054	8,585,397	403	GC	30
BF044A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,029	8,585,396	404	GC	23
BF045A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,016	8,585,396	404	GC	15
BF048A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,979	8,585,394	404	GC	24
BF054A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,117	8,585,451	403	GC	14
BF055A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,104	8,585,451	403	GC	13
BF058A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,067	8,585,450	403	GC	28

BF059A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,054	8,585,450	404	GC	18
BF062A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,004	8,585,450	404	GC	13
BF071A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,891	8,585,447	405	GC	30
BF076A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,904	8,585,391	405	GC	27
BF078A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,879	8,585,391	405	GC	24
BF079A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,867	8,585,390	405	GC	26
BF088A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,042	8,585,346	403	GC	18
BF089A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,029	8,585,346	403	GC	26
BF090A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,016	8,585,347	404	GC	27
BF091A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,004	8,585,346	404	GC	28
BF092A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,992	8,585,344	404	GC	31
BF093A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,941	8,585,345	404	GC	31
BF094A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,930	8,585,345	404	GC	36
BF095A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,917	8,585,345	404	GC	36
BF100A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,892	8,585,347	405	GC	36
BF102A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,980	8,585,346	404	GC	30
BF111A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,053	8,585,298	403	GC	30
BF112A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,040	8,585,298	403	GC	30
BF113A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,027	8,585,298	403	GC	3
BF114A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,015	8,585,298	403	GC	1
BF115A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,990	8,585,297	403	GC	3
BF116A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,003	8,585,294	403	GC	3
BF117A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,978	8,585,296	404	GC	3
BF118A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,966	8,585,296	404	GC	3
BF119A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,953	8,585,295	404	GC	3
BF120A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,941	8,585,295	404	GC	3
BF125A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,091	8,585,249	402	GC	3
BF126A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,078	8,585,248	402	GC	3
BF127A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,066	8,585,248	402	GC	3
BF129A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,028	8,585,248	403	GC	1
BF130A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,015	8,585,248	403	GC	1
BF131A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,002	8,585,247	403	GC	1
BF132A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,991	8,585,247	403	GC	2
BF134A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,965	8,585,247	403	GC	2
BF138A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,118	8,585,199	401	GC	2
BF139A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,106	8,585,199	401	GC	3
BF140A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,092	8,585,199	401	GC	3
BF144A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,044	8,585,199	402	GC	1
BF152A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,016	8,585,210	403	GC	1
BF153A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,103	8,585,144	401	GC	3
BF154A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,091	8,585,144	401	GC	3
BF155A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,079	8,585,144	401	GC	32

	I .	1	I	I	I		l	I	1
BF156A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,065	8,585,144	401	GC	36
BF157A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,053	8,585,144	401	GC	36
BF158A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,041	8,585,144	401	GC	36
BF159A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,092	8,585,097	400	GC	13
BF160A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,078	8,585,096	401	GC	20
BF161A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,067	8,585,096	401	GC	24
BF162A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,054	8,585,095	401	GC	13
BF163A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,042	8,585,095	401	GC	18
BF164A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,105	8,585,093	400	GC	30
BF165A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,121	8,585,099	400	GC	10
BF166A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,113	8,585,047	400	GC	20
BF167A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,116	8,585,144	401	GC	30
BF168A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,100	8,585,046	400	GC	10
BF169A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,088	8,585,046	400	GC	15
BF170A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,076	8,585,046	400	GC	11
BF171A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,063	8,585,046	400	GC	17
BF172A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,051	8,585,046	400	GC	15
BF173A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,038	8,585,045	401	GC	11
BF174A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,140	8,585,492	402	GC	10
BF175A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,126	8,585,495	402	GC	5
BF176A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,114	8,585,495	402	GC	8
BF177A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,102	8,585,495	403	GC	12
BF178A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,089	8,585,495	403	GC	23
BF179A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,077	8,585,495	403	GC	30
BF180A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,064	8,585,495	403	GC	30
BF181A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,052	8,585,496	403	GC	24
BF182A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,039	8,585,495	404	GC	36
BF183A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,026	8,585,496	404	GC	36
BF184A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,014	8,585,496	404	GC	25
BF185A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,001	8,585,496	404	GC	21
BF186A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,989	8,585,496	404	GC	14
BF187A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,977	8,585,495	404	GC	26
BF188A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,964	8,585,496	404	GC	36
BF189A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,952	8,585,496	404	GC	23
BF190A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,939	8,585,496	404	GC	24
BF191A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,926	8,585,496	404	GC	16
BF192A	Montepuez Central	Buffalo	8870C	 WGS84_37S	471,091	8,585,547	403	GC	16
BF193A	Montepuez Central	Buffalo	8870C	 WGS84_37S	471,079	8,585,547	403	GC	28
BF194A	Montepuez Central	Buffalo	8870C	 WGS84_37S	471,066	8,585,547	403	GC	24
BF195A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,053	8,585,547	403	GC	36
BF196A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,041	8,585,547	404	GC	36
BF197A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,028	8,585,548	404	GC	36

BF198A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,016	8,585,548	404	GC	36
BF199A	Montepuez Central	Buffalo	8870C	WGS84_375	471,003	8,585,548	404	GC	19
BF200A	Montepuez Central	Buffalo	8870C	WGS84_375	470,991	8,585,548	404	GC	15
BF201A	Montepuez Central	Buffalo	8870C	WGS84_375	470,978	8,585,548	404	GC	31
BF202A	Montepuez Central	Buffalo	8870C	WG384_373 WGS84_37S	470,978	8,585,548	404	GC	14
BF203A	Montepuez Central	Buffalo	8870C		470,903		404	GC	14
BF204A	Montepuez Central	Buffalo	8870C	WGS84_37S WGS84_37S	470,934	8,585,546	404	GC	30
BF204A BF205A	Montepuez Central	Buffalo	8870C	WG384_373 WGS84_37S	471,028	8,585,596 8,585,596	404	GC	30
BF206A	Montepuez Central	Buffalo	8870C	WG384_373 WGS84_37S	471,003	8,585,596	404	GC	9
BF207A	Montepuez Central	Buffalo	8870C	WGS84_375	470,991	8,585,596	404	GC	23
BF208A	Montepuez Central	Buffalo	8870C	WG384_373 WGS84_37S	470,991	8,585,596	404	GC	16
BF209A	Montepuez Central	Buffalo	8870C	WG384_373 WGS84_37S			404	GC	26
BF210A	Montepuez Central	Buffalo	8870C	WG384_373 WGS84_37S	471,068 471,055	8,585,645 8,585,645	403	GC	17
BF210A	Montepuez Central	Buffalo	8870C	WGS84_373	471,033		403	GC	16
BF211A	Montepuez Central	Buffalo	8870C	-		8,585,645	403	GC	10
BF212A BF213A	•	Buffalo	8870C	WGS84_37S	471,030	8,585,645	404	GC	15
BF213A BF214A	Montepuez Central Montepuez Central	Buffalo	8870C 8870C	WGS84_37S	471,018	8,585,645	404	GC	26
BF214A BF215A		Buffalo	8870C	WGS84_37S	471,006	8,585,645	404	GC	17
BF215A BF216A	Montepuez Central	Buffalo	8870C 8870C	WGS84_37S	470,993	8,585,645	404	GC	7
BF210A BF217A	Montepuez Central	Buffalo	8870C 8870C	WGS84_37S	471,064	8,585,695	403	GC	24
	Montepuez Central	Buffalo	ł	WGS84_37S	471,052	8,585,695		GC	-
BF218A	Montepuez Central	-	8870C	WGS84_37S	471,040	8,585,696	403	GC	24
BF219A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,027	8,585,695	403		27
BF220A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,015	8,585,696	404	GC	16
BF221A	Montepuez Central	Buffalo	8870C	WGS84_375	470,989	8,585,696	404	GC	14
BF222A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,977	8,585,696	404	GC	12
BF223A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,065	8,585,745	403	GC	8
BF224A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,052	8,585,745	403	GC	6
BF225A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,039	8,585,745	403	GC	17
BF226A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,027	8,585,745	403	GC	8
BF227A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,015	8,585,745	403	GC	16
BF228A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,002	8,585,745	403	GC	20
BF229A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,990	8,585,745	404	GC	23
BF230A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,977	8,585,745	404	GC	15
BF231A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,063	8,585,796	402	GC	13
BF232A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,050	8,585,796	403	GC	9
BF233A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,038	8,585,795	403	GC	22
BF234A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,025	8,585,795	403	GC	23
BF235A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,013	8,585,795	403	GC	15
BF236A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,000	8,585,794	403	GC	18
BF237A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,989	8,585,794	403	GC	6
BF238A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,976	8,585,793	403	GC	8
BF239A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,062	8,585,844	402	GC	11

	l		1	1	I		l	1	1 -
BF240A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,050	8,585,844	402	GC	9
BF241A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,037	8,585,845	402	GC	11
BF242A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,024	8,585,845	403	GC	12
BF243A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,012	8,585,846	403	GC	6
BF244A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,000	8,585,846	403	GC	10
BF245A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,986	8,585,846	403	GC	9
BF246A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,065	8,585,895	402	GC	16
BF247A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,052	8,585,895	402	GC	16
BF248A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,039	8,585,895	402	GC	12
BF249A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,027	8,585,895	402	GC	e
BF250A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,015	8,585,894	403	GC	9
BF251A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,003	8,585,894	403	GC	15
BF252A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,988	8,585,894	403	GC	23
BF253A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,065	8,585,944	402	GC	17
BF254A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,051	8,585,943	402	GC	20
BF255A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,039	8,585,943	402	GC	16
BF256A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,026	8,585,943	402	GC	13
BF257A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,014	8,585,943	402	GC	24
BF258A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,001	8,585,943	403	GC	2
BF259A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,988	8,585,943	403	GC	14
BF260A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,066	8,585,994	402	GC	1:
BF261A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,054	8,585,995	402	GC	1
BF262A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,042	8,585,995	402	GC	1
BF263A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,029	8,585,995	402	GC	:
BF264A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,017	8,585,995	402	GC	1
BF265A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,004	8,585,995	402	GC	1
BF266A	Montepuez Central	Buffalo	8870C	WGS84_37S	470,991	8,585,995	402	GC	1
BF267A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,128	8,585,145	400	GC	24
BF268A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,153	8,585,145	400	GC	9
BF269A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,129	8,585,099	400	GC	24
BF270A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,154	8,585,100	400	GC	23
BF271A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,179	8,585,101	399	GC	18
BF272A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,124	8,585,046	400	GC	14
BF273A	Montepuez Central	Buffalo	8870C	WGS84_37S	471,149	8,585,047	399	GC	1
BFGT01	Montepuez Central	Buffalo	8870C	WGS84_37S	470,970	8,585,497	404.5	DD	149.6
BFGT02	Montepuez Central	Buffalo	8870C	 WGS84_37S	471,071	8,585,503	403.5	DD	140.6
BFGT03	Montepuez Central	Buffalo	8870C	 WGS84_37S	471,004	8,585,296	403.6	DD	119.6
BFGT04	Montepuez Central	Buffalo	8870C	 WGS84_37S	471,102	8,585,305	402.2	DD	119.65
MN0004D	Montepuez Central	Buffalo	8870C	WGS84_37S	470,758	8,585,607	405.2	DD	190.5
MN0007D	Montepuez Central	Buffalo	8870C	WGS84_37S	470,980	8,585,601	404.3	DD	179.5
MN0014D	Montepuez Central	Buffalo	8870C	WGS84_375	470,857	8,585,612	405.5	DD	71.5
MN0017D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,038	8,585,599	403.9	DD	38.3

	1	1	1					1	1 1	
MN0018D	Montepuez Central	Buffalo	8870C	WGS84_37S	471,037	8,585,599	403.9	DD	141.08	

Appendix 3: Buffalo	Drill Hole	Significant	Intercept Tabl	e:
Appendix 5. Dunalo		orginitoant	πισισορι ταρι	U .

			nole Intercept Lo		Intercepts >4m; >10% TGC with less than 3m of internal dilution							
Prospect Hole ID		UTM_East	UTM_North	Elevation (rl)	Max Depth	Dip	True Azimuth	From (m)	To (m)	Downhole Interval (m)	Weighted Average TGC %	
Buffalo	BF153A	471,113	8,585,143	383	36	-60	090	13	34	21	12.13	
Buffalo	BF154A	471,101	8,585,143	384	36	-60	090	15	36	21	12.91	
Buffalo	BF155A	471,082	8,585,144	395	32	-60	090	4	11	7	10.30	
Buffalo	BF155A	471,089	8,585,143	382				18	31	13	11.23	
Buffalo	BF156A	471,071	8,585,143	391	36	-60	090	5	36	31	13.97	
Buffalo	BF157A	471,063	8,585,143	385	36	-60	091	6	32	26	15.31	
Buffalo	BF158A	471,045	8,585,144	394	36	-60	092	7	11	4	10.52	
Buffalo	BF158A	471,052	8,585,143	382				16	28	12	15.38	
Buffalo	BF164A	471,110	8,585,093	392	30	-60	090	8	12	4	13.78	
Buffalo	BF167A	471,121	8,585,143	392	30	-60	090	5	16	11	11.76	
Buffalo	BF167A	471,128	8,585,142	380				19	28	9	11.38	
Buffalo	BF178A	471,092	8,585,495	397	23	-60	090	5	9	4	14.48	
Buffalo	BF180A	471,076	8,585,494	382	30	-60	090	22	27	5	10.02	
Buffalo	BF181A	471,059	8,585,495	391	24	-60	090	9	20	11	11.74	
Buffalo	BF182A	471,046	8,585,495	391	36	-60	090	11	18	7	11.09	
Buffalo	BF182A	471,055	8,585,494	375				29	36	7	11.14	
Buffalo	BF183A	471,034	8,585,495	390	36	-60	090	14	18	4	10.57	
Buffalo	BF195A	471,068	8,585,546	377	36	-60	090	28	33	5	11.61	
Buffalo	BF196A	471,047	8,585,547	394	36	-60	090	8	35	27	11.99	
Buffalo	BF197A	471,045	8,585,546	374	36	-60	090	32	36	4	12.50	
Buffalo	BF198A	471,031	8,585,546	378	36	-60	090	26	34	8	11.13	
Buffalo	BF201A	470,990	8,585,546	383	31	-60	090	22	26	4	16.33	
Buffalo	BF204A	471,039	8,585,595	384	30	-60	090	20	26	6	10.13	
Buffalo	BF210A	471,058	8,585,645	399	17	-60	090	2	9	7	13.11	
Buffalo	BF211A	471,046	8,585,645	397	16	-60	090	3	11	8	10.50	
Buffalo	BF212A	471,033	8,585,645	399	26	-60	090	3	7	4	15.03	
Buffalo	BF214A	471,015	8,585,644	388	24	-60	090	15	22	7	10.99	
Buffalo	BF217A	471,059	8,585,695	392	23	-60	090	7	19	12	12.48	

Buffalo	BF218A	471,044	8,585,695	396	23	-60	090	3	13	10	14.40
Buffalo	BF234A	471,035	8,585,794	386	24	-60	090	17	23	6	10.80
Buffalo	BF252A	470,994	8,585,894	394	12	-60	090	3	18	15	13.39
Buffalo	BF257A	471,020	8,585,942	392	24	-60	090	9	15	6	12.83
Buffalo	BF267A	471,134	8,585,144	390	24	-60	090	10	14	4	11.68